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Abstract

In this paper we present a generalised procedure for Diffie-Hellman key exchange
problem to share secret key in a publickey cryptosystem using action of a semiring
over a semimodule.
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1 Introduction

The brilliant and important cryptographic system is the RSA system which has the

strange but extremely useful asymmetric property: There are two keys involved - Pub-

lickey and Private key. Each recipient of messages could have both the keys. The

recipient announces his publickey to everyone but keeps the private key secret. Anyone

can encode messages for a particular recipient using the publickey. However only some-

one with the knowledge of the private key can decode them.

Asymmetric cryptographic system used the notion of a (one way)trapdoor func-

tions - functions whose outputs can be computed in a reasonable amount of time but

whose inverses are inordinately difficult and time consuming to compute. Cryptographic

systems based on trapdoor functions are now used in real world communications by gov-

ernments, businesses and individuals, notably for secured transactions over internet.

The first step in a cryptosystem is to label all possible plaintext message units and

all possible cyphertext message units by means of mathematical objects from which

enciphering transformation and deciphering transformation can easily be constructed.

There are several techniques available in the literature to construct these structural

informations. In practice one can have an equipment for enciphering and deciphering

which is constructed to implement only one type of crptosystem. Over a peroid of time

the information about the type of system they are using be leakout. To increase the

security, they need to change frequently the choice of parameters used with the system.

The parameter is called a key(secret key).

The origin of using the discrete logarithmic problem in cryptographic schemes goes

back to the seminal paper of Diffie and Helllman [1]. The discrete logarithm problem

is the basic incredient of many cryptographic protocols. Given a finite group G and

elements g, h ∈ G,find a positive integer n ∈ N such that gn = h. The above problem

has a solution if and only if h ∈< g >,the cyclic group generated by g.If h ∈< g >

then there is a unique integer n satisfying 1 ≤ n ≤ ord(g)such that gn = h. We call this

unique integer the discrete logarithm of h with base g and we denote it by logg h. Diffie
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and Hellman proposed the DLP as a good source for a (one way)trapdoor function. In

Diffie and Hellman method, using the DLP, two users agree on a secret cryptographic

key using only an insecure channel of communication. Before the discovery of publickey

systems the two parties wishing to communicate will meet beforehand to agree upon

a secter key. This severly limits the spontaneity of secure communication and may

require a courier. The Diffie-Hellman key selection protocol eliminates this problem. It

is desccribed as follows: The key construction between two parties A and B proceeds

as follows. Let M be a large integer (say > 1040).

1. A chooses a random integer x with 0 < x < M,computes gx and sends the result

to B, keeping x secret.

2. B chooses a random integer y with 0 < y < M,computes gy and sends the result

to A, keeping y secret.

3. Both A and B construct the key from gxy, which A computes from (gy)x and B

computes from (gx)y.

If this scheme is to be secure then the problem of computing gxy from knowledge of

g, gxand gyshould be interactable. We shall refer this problem as the Diffie-Hellman

problem. It is clear that solving the underlying discrete logarithm problem is sufficient

for breaking the Diffie-Hellman protocol. For this reason researchers have been search-

ing for groups where the discrete logarithm problem is considered a computationally

difficult problem. In the literature many groups have been proposed as candidates for

studying the discrete logarithm problem.The discrete logarithm problem over a group

can be seen as a special instance of an action by a semigroup. The interesting thing is

that every semigroup action by an abelian group gives rise to a Diffie-Hellman key ex-

change. The generalisation of the original Diffie-Hellman key exchange in (Z/pZ)∗found

a new depth when Koblitz [4] suggested that such a protocol could be used with the

group over an elliptic curve.

The idea of using semigroup actions for the purpose of buiding one-way trap-

door function is not a new one and it appeared in one way or the other in several



198 M. SUNDAR , P. VICTOR AND M. CHANDRAMOULEESWARAN

papers[5],[6],[7]. In this paper, we present a generalisation of the Diffie-Hellman key

exchange protocol. Crucial for this generalisation is the semigroup actions on finite

sets. Our main aim will be the semigroup actions built from multiplicative structure

on semirings, acting on finite semimodules over semirings. In particular, we construct

semiring action on a finite left-semimodule over a semiring. The setup is general enough

that it includes the Diffie-Hellman protocol over a general finite left semimodule.

2 Preliminaries

In this section we recall some basic definitions from cryptosystem and semirings that

are needed for our work. [2] Let A denote a finite set called alphabet of definition and

M denote the set called the message space which consists of strings of symbols from

alphabet of definition. An element of M is called a plain text message.

Let C denote a set called ciphertext space. It consisits of strings of symbols from the

alphabet of definition which may differ from the alphabet of definition of M. An element

of C is called a ciphertext.

[2] A one-to-one function f from a set M to a set C is called one-way if it is easy to

compute f(m) for all m ∈M,but for a randomly selected c ∈ C,finding an m ∈Msuch

that c = f(m)is computationally infeasible. In otherwords, we can easily compute f,but

it is computationally infeasible to compute f−1. [2] A key is a piece of information or a

parameter that determines the functional output of a cryptographic algorithm. A key

specifies the transformation of plaintext into ciphertext, and vice versa. Let K denote

the key space which consists of a set of keys. We can classify the key into two types-

one is a publickey and the other is a private key.

Public key is made available to everyone through publicly accessible directory and the

private key must remain confidential to its respective owner. [2] An Encryption function

ek is a mapping from M to C and a Decryption function dk is a mapping from C to

M such that dk(ek(x)) = x, for every x ∈ M. Let E denote the set of all encryption

functions from M to C and D, the set of all decryption functions from C to M.

[2] A cryptosystem is defined as a five-tuple (M,C,K,E,D) where M,C,K,E,D

are mentioned above. There are two types of cryptosystems based on the manner in

which encryption-decryption is carried out in the system.

(i)Symmetric key cryptosystem
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(ii) Asymmetric or Publickey cryptosystem

The former one is the encryption process where same keys are used for encryption and

decryption. But in the Publickey cryptosystem different keys are used for encryption

and decryption

[3] A semiring is a non-empty set S together with two binary operations + and ·
such that

1. (S,+) is a commutative monoid with identity element 0.

2. (S, ·) is a moniod with 1.

3. Multiplication distributes over addition from either sides.

4. 0r = 0 = r0, ∀r ∈ S.

[3] A left-ideal I of S is a non-empty subset of S satisfying the following conditions:

1. 1 /∈ I.

2. If a, b ∈ I,then a+ b ∈ I,

3. If a ∈ I, r ∈ S then ra ∈ S,

Analogously we can define right-ideal of a semiring. [3] Let S be a semiring. A left

S-semimodule is a commutative monoid (M,+) with additive identity 0M for which we

have a function S ×M →M, denoted by (r,m) 7→ rm and called the scalar multiplica-

tion, which satisfies the following conditions :

1. (rr
′
)m = r(r

′
m);

2. r(m+m
′
) = rm+ rm

′
;

3. (r + r
′
)m = rm+ r

′
m;

4. r0M = 0M = 0Rm.
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If the semiring S consists of an unity 1 in S then the semimodule M over S satisfies

1 ·m = m ∀ m ∈M.

Analogously we can define right semimodules over S. (Group Action)[5] Let A =

(S, ·) be a semigroup and A a semimodule over S. Then a left semigroup action of A

on M is a map from A×M →M such that

1. ex = x

2. (ab)x = a(bx), ∀ a, b ∈ A, x ∈M

(Semiroup Action Problem)[5] Given a semigroup G acting on a set Sand elements

x ∈ Sand y ∈ Gx,find g ∈ Gsuch that gx = y.

3 Key Sharing with semiring Actions

In this section we describe a procedure to share the secret key in a publickey cryptosys-

tem using semiring action on a semimodule. We start with the following definitions.

Let S be a semiring and M be a semimodule over S.The mapping S ×M → M is said

to be an action of S on M if the following conditions are satisfied:

1. s1(s2m) = (s1s2)m;

2. (s1 + s2)m = s1m+ s2m;

3. s1(m+ n) = s1m+ s1n, for all s1, s2 ∈ S and m,n ∈M.

A semigroup M is said to be bicyclic if for any x ∈M,there exists two elements a, b such

that x = ambn for some m,n ∈ N. We consider two commutative semirings S1 and S2

and M1 is a S1−left semimodule and M2 is a S2−left semimodule.

Then A = S1 × S2 is a commutative semiring and M = M1 ×M2 is a left semimodule

of A. Define φ : A×M →M by

φ[(f, g), (m1,m2)] 7→ (fm1, gm2), ∀f ∈ S1, g ∈ S2,m1 ∈M1,m2 ∈M2.

Then φ is a semiring action on M. Now define

φS1 : A×M →M by φS1 [(f, g), (m1,m2)] 7→ (fm1,m2)
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φS2 : A×M →M by φS2 [(f, g), (m1,m2)] 7→ (m1, gm2.)

Protocol:

Let A = S1×S2 be a commutative semiring, M = M1×M2 be a left semimodule of

A, and φS1 , φS2 are semiring actions on M . Then the key exchange in (A,M, φS1 , φS2)

is the following protocol.

1. Alice and Bob publicly agree on an element m = (m1,m2) ∈M

2. Alice chooses (s1, s2) ∈ A and computes φS1 [(s1, s2)(m1,m2)]. Alice’s private key

is (s1, s2), her public key is φS1 [(s1, s2)(m1,m2)].

3. Bob chooses (t1, t2) ∈ A and computes φS2 [(t1, t2)(m1,m2)]. Bob’s private key is

(t1, t2), his public key is φS2 [(t1, t2)(m1,m2)].

4. Their common secret key is then

φS1 [(s1, s2)φS2(t1, t2)(m1,m2)] = φS1 [(s1, s2)(m1, t2m2)] = (s1m1, t2m2)

φS2 [(t1, t2)φS1(s1, s2)(m1,m2)] = φS2 [(t1, t2)(s1m1,m2)] = (s1m1, t2m2)

This protocol is illustrated by the following example: Let S1 = B(5, 3) = ({0, 1, 2, 3, 4},⊕,�)

be a semiring with the following Cayley tables.

⊕ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 3

2 2 3 4 3 4

3 3 4 3 4 3

4 4 3 4 3 4

� 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 4 4

3 0 3 4 3 4

4 0 4 4 4 4

Let M1 = {e1, x, y} be an S1−semimodule under addition and scalar multiplication

defined by the following cayley table:

+ e1 x y

e1 e1 x y

x x x e1
y y e1 y

∗ e1 x y

0 e1 e1 e1
1 e1 x e1
2 e1 x e1
3 e1 x e1
4 e1 x e1
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Let S2 = B(4, 2) = ({0, 1, 2, 3},⊕,�) be a semiring with the following Cayley tables.

⊕ 0 1 2 3

0 0 1 2 3

1 1 2 3 2

2 2 3 2 3

3 3 2 3 2

� 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 2 2

3 0 3 2 3

Let M2 = {e2, a, b, c}be an S2−semimodule under addition and scalar multiplication

defined by the following cayley table:

+ e2 a b c

e2 e2 a b c

a a a b b

b b b b a

c c b a c

∗ e2 a b c

0 e2 e2 e2 e2
1 e2 e2 e2 e2
2 e2 b b e2
3 e2 b b e2

Let A = S1×S2 be the semiring with the operations⊕ and� defined componentwise.

Let M = M1 ×M2 be the semimodule over A. Let (x, b) ∈M be the public key.

Alice chooses (2, 3) ∈ A as her private key and calculates

φS1 [(2, 3), (x, b)] = (2x, b) = (x, b)

and sends it to Bob. Bob chooses (3, 1) ∈ A as his private key and calculates

φS2 [(3, 1), (x, b)] = (x, 1b) = (x, e2)

and sends it to Alice. Now Alice calculates

φS1((2, 3), (x, e2)) = (2x, e2) = (x, e2)Bob calculate

φS2((3, 1), (x, b)) = (x, 1.b) = (x, e2)Since 3 and 3 are equal Allice and Bob have ex-

changed the secret key.

Let S1 and S2 and A = S1 × S2 be the semirings as in the previous example. Let

M1 = {0, 3, 4} be a left ideal of S1and let M2 = {0, 2, 3} be a left ideal of S2. Then

M = M1 ×M2 is a left semi-module over A.

Let (3, 2) ∈ M be the public key. Alice chooses (1, 3) ∈ A as her private key

and calculates φS1 [(1, 3), (3, 2)] = (1.3, 2) = (3, 2) and sends it to Bob. Bob chooses
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(1, 0) ∈ A as his private key and calculates φS2 [(1, 0), (3, 2)] = (3, 0.2) = (3, 0) and sends

it to Alice.

Now Alice calculates

φS1((1, 3), (3, 0)) = (1.3, 0) = (3, 0)Bob calculates

φS2((1, 0), (3, 2)) = (3, 0.2) = (3, 0)Since 3 and 3 are equal both Allice and Bob have

exchanged the secret key.

Problem (Semiring Action Problem (SAP)): Given a semiring A = S1 × S2
acting on a left semimodule M = M1 × M2 and elements n = (n1, n2) ∈ M and

r = (r1, r2) ∈ φS1(An) (or) φS2(An), find q = (q1, q2) ∈ A such that φS1(qn) = r (or)

φS2(qn) = r.

Generic Attacks of SAP: If an attacker, Eve, can find an α = (α1, α2) ∈ A

such that (α1, α2)(m1,m2) = (s1, s2)(m1,m2), then Eve may find the shared secret by

computing

φS1 [(α1, α2)φS2 [(t1, t2)(m1,m2)]] = (φS1 [(α1, α2)]φS2 [(t1, t2)]) (m1,m2)

= φS2 [(t1, t2)] (φS1 [(α1, α2)(m1,m2)])

= φS2 [(t1, t2)] (φS1 [(s1, s2)(m1,m2)])

= φS2 [(t1, t2)] (s1m1,m2)

= (s1m1, t2m2)

Eve computes φS1(rm) for all possible r = (r1, r2) ∈ A intil she finds some α = (α1, α2)

with φS1 [(α1, α2)(m1,m2)] = φS1 [(s1, s2)(m1,m2)]

Then she is able to break the system as explained above. To avoid this attack, Bob

and Alice must choose A and M sufficiently large and select a good candidate for

m = (m1,m2),such that the size of the set

AEve = {α ∈ A | φS1 [(α1, α2)(m1,m2)] = φS1 [(s1, s2)(m1,m2)]}

is small with respect to the size of A.

Define Stab(m) = {q ∈ A | qm = m} ,the subsemiring of A. One can observe thet AEveis

simply a left coset of Stab(m). Now AEve will be small in size if A/Stab(m) is large or

in other words Stab(m) is small in size with respect to the size of A. This is true since
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every element α ∈ Stab(m) has the property that α ∈ AEve, that is r Stab(m) ⊂ AEve.

Consider S1, S2 and M1,M2 as in the previous example. Let (3, 2) ∈ M be the public

key. Alice chooses (1, 3) ∈ A as her private key and calculates φS1((1, 3), (3, 2)) = (3, 2).

Now Eve chooses (3, 3) ∈ A and calculates φS1((3, 3), (3, 2)) = (3, 2). Then Eve may

find the shared secret by computing φS1 [(3, 3)φS2 [(4, 2)(3, 2)]] = (3, 4) and break the

cryptosystem.

Here AEve = {(1, 3), (3, 3)} and Stab(3, 2) = {(1, 3), (3, 3)} . To avoid the attack by Eve,

Alice and Bob choose A and M sufficiently large and select m ∈M such that the size of

AEve is small with respect to the size of A. If one has the ability to compute efficiently

the canonical representatives for the right coset a Stab(m) this computed value could

potentially be used to an attacker’s advantage. However, we use the linear action of

commutative semirings on semi modules, so that the above task become difficult.
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